Concept Selection:

Following concept generation and selecting five medium and three high fidelity designs, we moved forward to further analyze the designs to ultimately select the one best for our application and project. To do this, we performed multiple analysis and comparison tests. First we started by comparing all the engineering requirements of the designs we were moving forward with in a binary pairwise matrix to find how they are weighted against each other. Following that, we compared the engineering requirements in the house of quality to see how their raw scores compared to each other. From the raw scores, we ranked the engineering requirements to understand which requirements are the most critical to the design success. Pugh charts were then used to show which designs provide the best improvement or meet each engineering requirement the best and allowed us to narrow down the designs we moved forward with after concept generation so that we could perform the analytical hierarchy process. After moving through three iterations of Pugh charts and eliminating three out of the six concepts we moved forward with, we performed the AHP to find which design is best suited for this project.

House of Quality:

For house of quality, we started by finding the importance weight factor for each customer requirement. This was done using the Binary Pairwise Matrix below:

Binary	Pairwise Matrix	1	2	3	4	5	6	7	Total
1.	Supports Needed Weight	-	1	1	0	1	0	0	3
2.	Resists Plastic Deformation	0	-	0	1	0	0	0	1
3.	Regulates Deflection Under Load	0	1	-	0	0	1	1	3
4.	Combats All Aerodynamic Loads	1	0	1	-	1	1	1	5

5. Controls Airflow	0	1	1	0	-	1	0	3
6. Implementation Cost	1	1	0	0	0	-	0	2
7. Manufacturability	1	1	0	0	1	1	-	4
Total	3	5	3	1	3	4	2	

The binary pairwise comparison in Table 1 above resulted in weight factors of all the customer requirements ranked by importance. The customer requirements that have the greatest weight are 'Combats All Aerodynamic Loads', with the overall highest importance with a ranking of 5. Then 'Manufacturability' coming in as the second highest importance with a ranking of 4. These weighed the most because the hardtop needs to achieve both factors for Intrepid to be satisfied with our design. The second highest priority importance weight factors were 'Controls Airflow,' 'Regulates Deflection Under Load,' and 'Supports Needed Weight.' These three shared the same importance weight factor and all three are required in order to meet our customers' needs but they play a slightly less pivotal role than 'Combats All Aerodynamic Loads' and 'Manufacturability.' Controlling airflow, regulating deflection under load, and supporting the needed weight are all necessary functions to create a successful design, but are easier to achieve than airflow control and manufacturability. Therefore, these three are rated lower in the binary pairwise matrix, but still important. The requirements with the lowest importance weight factors are 'Implementation Cost' and 'Resists Plastic Deformation'. Cost is important and if the design returns high improvements in some areas than cost increase can be justified. The hardtop must resist plastic deformation but if it can withstand all the forces and satisfy the previous customer requirements, then it shouldn't plastically deform. Therefore, other requirements are rated higher than resisting plastic deformation because if they are achieved, they most likely account for deformation resistance as well.

Once the importance weight factors were determined, we constructed the House of Quality

table below, translating our customer needs into engineering characteristics:

	11		(in/in)	in the sec	11	(L/D)	
Customer Requirements	IWF	Load Bearing Capacity	Strain	Deflection	Hardtop Weight	Lift-to- Drag ratio	Cost
Supports Needed Weight	3	9	1	1			
Resists Plastic Deformation	1	3	9	1	3		
Regulates Deflection Under Load	3	3	1	9	3		
Combats All Aerodynamic Loads	5	3				3	
Controls Airflow	2					9	
Implementation Cost	1						9
Manufacturability	4				3		9
Raw Score	202	54	15	31	24	33	45
Relative Weight	-	26.7	7.4	15.4	11.9	16.3	22.3
Rank Order	-	1	6	4	5	3	2

House of Quality

The house of quality table is shown above. In this table, the engineering characteristics can be compared to the customer requirements found from functional decomposition on a 1, 3, 9 scale. A rating of 1 means that the characteristic and the customer requirement have a weak relationship, 3 means they have a medium relationship, and 9 means they have a strong relationship and impact on each other. The ranking was left blank if no relationship existed. The ranking order of each characteristic will help us when eliminating concepts from our medium and high-fidelity concepts and selecting the final design, showing which concepts meet the most requirements or create the best resulting boat performance.

Out of the 100 concepts generated earlier during concept generation, we highlighted three high fidelity concepts and five medium fidelity concepts. We further dwindled the list of concepts down to six concepts to move forward with and further analyze for selection, being:

- 1. Lightweight Hardtop- less dense fiberglass and resin usage.
- 2. Aerodynamic Hardtop- aerodynamic enhancements regarding lift-to-drag ratio.
- 3. Optimal Hardtop- FEA used to minimize material in low stress areas for light weighting.
- 4. Combination Hardtop- light weight, aerodynamic, and optimal changes implemented.
- 5. S-2 Glass Hardtop- S-2 glass and resin takes place of current fiberglass and resin.
- 6. High Lift Wing Hardtop- hardtop modeled as high lift wing.

		Concepts					
Selection	Existing	1	2	3	4	5	6
Criteria	Hardtop						
Load Bearing Capacity		+	-	S	S	-	S
Strain		S	-	+	-	-	-
Deflection		-	+	+	S	+	+
Hardtop Weight		+	+	+	S	S	+
Lift-to-Drag Ratio	DATUM	S	+	+	+	+	-
Implementati on Cost		S	S	S	S	-	-

Pugh Chart 1

Manufacturab ility	S	S	-	-	-	S
Number of +	2	3	4	1	3	2
Number of -	1	2	2	2	4	3

The first iteration of the Pugh Chart is shown above. This Pugh Chart uses the current hardtop as the datum and compares the new concepts with the current hardtop against our selection criteria. From this Pugh Chart we decided to not move forward with concepts 5 and concepts 6 because they had the most negatives. We did, however, decide to use concept 5 as our datum for the next Pugh Chart because it did have several pluses.

Pugh Chart 2

		Concepts				
Selection	Concept5	1	2	3	4	
Criteria						
Load Bearing		+	S	+	+	
Capacity						
Strain		+	S	+	S	
Deflection		-	S	S	-	
Hardtop Weight		+	+	+	S	
Lift-to-Drag		S	+	+	+	
Ratio	DATUM					
Implementation		+	S	S	S	
Cost						
Manufacturability		+	+	S	-	
Number of +		5	4	4	2	
Number of -		1	0	0	2	

The second iteration of the Pugh Chart shown above uses the fifth concept, using S-2 glass in place of current fiberglass, as the datum and compares the first 4 concepts. From this Pugh Chart we

decided that we will move forward in our final Pugh chart with concepts 1,2 and 3. In the following Pugh Chart, we will use concept 4 as the datum. We decided to move forward with the fourth concept as the datum because it had the least number of pluses and the most minuses.

Selection Criteria	Concept 4	1	2	3
Load Bearing Capacity		S	-	S
Strain		S	S	S
Deflection		S	S	S
Hardtop Weight	DATUM	+	S	+
Lift-to-Drag Ratio		-	+	-
Implementation Cost		+	+	+
Manufacturability		+	+	+
Number of +		3	3	3
Number of -		1	1	1

Pugh Chart 3

For this final iteration of the Pugh Chart, we compared our first three designs against the fourth design. From this Pugh Chart we ended up with all three concepts having the same number of pluses and minuses. This will be taken into consideration when we begin our Analytical Hierarchy Process (AHP). All three designs had 3 pluses and one minus when compared with the fourth design datum.

Final Rating Matrix							
Selection Criteria	Lightweight Hardtop	Aerodynamic	Optimal Hardtop				
		Hardtop					
L.B.C.	0.1996	0.6008	0.1996				
Strain	0.1996	0.6008	0.1996				
Deflection	0.1996	0.6008	0.1996				
Hardtop Weight	0.1429	0.7143	0.1429				
L-D Ratio	0.7143	0.1429	0.1429				

Analytical Hierarchy Process:

Overall Cost	0.0858	0.42929	0.42929
Manufacturability	0.1429	0.1429	0.7143

The table above shows the final rating matrix that the analytical hierarchy process allowed us to create. The complete analytical hierarchy process can be seen in the appendix. For load bearing capacity, strain and deflection, the optimized hardtop and the light weighted hardtop were the top performers for those selection criteria. The optimized and lightweight hardtops also performed best when it came to hardtop weight. This is because the aerodynamic hardtop does not directly address hardtop weight while both the optimized hardtop and lightweight hardtop designs do. However, the aerodynamic hardtop design may greatly increase the lift-to-drag ratio which is a major criterion that Intrepid wants focused on. For overall cost, the lightweight hardtop has the best rating because the other two require significant mold changes and tooling hours. For manufacturability the lightweight hardtop and the aerodynamic hardtop are deemed the most manufacturable because they share the most similarities to the current hardtop model so require less changes to be made.

The rating for each engineering characteristic were considered and through several matrix operations that can be seen in the appendix, alternative values were generated. These alternative values are shown below and played a pivotal role in selecting the design we chose to move forward with:

Concept	Alternative Value
Lightweight Hardtop	0.27235
Aerodynamic Hardtop	0.39712
Optimal Hardtop	0.31943

The alternative values table above shows which design best fits our selection criteria. From this we decided to move forward with a combination of the three because of how close the alternative values all were. While the aerodynamic hardtop has the highest alternative value, it is important to intrepid that we lightweight and optimize the hardtop as well. The most improvement will come from

the aerodynamic properties of the hardtop but light weighting the hardtop is paramount to ensuring customer satisfaction. Given these alternative values and the ratings of our high fidelity designs, we have selected a final design.

Final Selection:

We wish to combine all three possible ways of improvement into one ideal design. The final design using the different methods above can be optimized for material minimization using FEA and mathematical methods, can be light weighted through different material usage, and aerodynamically enhanced through geometric or orientation changes. This design that could be crafted combining all designs mentioned in the AHP adequately fulfills both the engineering characteristics and the customer requirements and brings about the new model that will most improve the performance of the 409 Valor. This model will continue to be improved on during the iteration process. While not selected, we may still consider moving forward with the creation of 3 subset models for each individual characteristic of the combined ideal hardtop as well as with the ideal hardtop. We may consider creating full designs for just light weighting from material changes, aerodynamic enhancements from geometrical and orientation changes, and optimization through material minimization, so that there may be a plethora of design options at the end that may range in performance ability and cost.

APPENDIX:

AHP Rating Values

Rating Value	Relative weighting	Explanation of weighting
	importance	

1	A and B have equal	A and B both contribute
	importance.	equally to product success.
3	A is slightly more important	A contributes slightly more
	than B.	to product success than B.
5	A is strongly more important	A contributes strongly more
	than B.	than B to product success.
7	A is thought to be so very	A is very much more
	much more important than	important to product
	В.	success than B.
9	A is clearly demonstrated to	A is demonstrated with
	be more important than B.	evidence to be more
		detrimental to product
		success than B.

Table A-2: AHP Rating Explanations

Analytical Hierarchy Process (AHP)

Criteria Comparison Matrix [C]							
	LBC	Strain	Deflectio	Weight	L-D	Cost	Mfg.
			n		Ratio		Cost
Load Bearing	1	1	1	0.33	0.33	1	0.33
Capacity							
Strain	1	1	1	1	0.2	0.2	1
Deflection	1	1	1	1	1	0.33	1
Hardtop Weight	3	1	1	1	0.33	1	0.33
Lift-to-Drag	3	5	1	3	1	1	1
Ratio							
Implementation	1	5	3	1	1	1	1
Cost							
Manufacturabili	3	1	1	3	1	1	1
ty							
Sum	13	15	9	10.33	4.867	5.53	5.67

Criteria Comparison Matrix [C]

Table A-3: Comparison Matrix of Engineering Characteristics

Normalized Criteria Comparison Matrix [NormC]								
	LBC	Strain	Deflection	Weight	L-D Ratio	Cost	Mfg. Cost	Criteria Weights {W}
Load Bearing Capacity								
Strain								
Deflection								
Hardtop Weight								
Lift-to-Drag Ratio								
Implementation Cost								
Manufacturability								
Sum	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table A-4: Normalized Comparison Matrix of Engineering Characteristics

	Normalized Criteria Comparison Matrix [NormC]							
	LBC	Strain	Deflectio	Weight	L-D Ratio	Cost	Mfg.	Criteria
			n				Cost	Weights
								{W}
LBC	0.07692	0.06666	0.11111	0.03225	0.06849	0.18072	0.05882	0.08499
	308	667	111	806	315	289	353	978
Strain	0.07692	0.06666	0.11111	0.09677	0.04109	0.03614	0.17647	0.08645
	308	667	111	419	589	458	059	516
Deflectio	0.07692	0.06666	0.11111	0.09677	0.20547	0.06024	0.17647	0.11338
n	308	667	111	419	945	096	059	086
Hardtop	0.23076	0.06666	0.11111	0.09677	0.06849	0.18072	0.05882	0.11619
Weight	923	667	111	419	315	289	353	44
L-D Ratio	0.23076	0.33333	0.11111	0.29032	0.20547	0.18072	0.17647	0.21831
	923	333	111	258	945	289	059	56
Cost	0.07692	0.33333	0.33333	0.09677	0.20547	0.18072	0.17647	0.20043
	308	333	333	419	945	289	059	384
Manufac	0.23076	0.06666	0.11111	0.29032	0.20547	0.18072	0.17647	0.18022
turability	923	667	111	258	945	289	059	036
Sum:	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Consistency Check					
Weighted Sum Vector	Criteria Weights {W}	Consistency Vector			
1.048121	0.1056	9.925			
2.691252	0.2544	10.579			
2.224183	0.2193	10.142			
1.520471	0.1137	13.372			
1.250903	0.1151	10.868			
0.579788	0.0543	10.677			
1.706916	0.1671	10.215			

Table A-5: Consistency Check Table for Engineering Characteristics

Average Consistency	7.78266
Consistency Index	0.13044
Consistency Ratio (<0.10)	0.09662

Table A-6: Consistency Calculations for Engineering Characteristics

Load Bearing Capacity Comparison					
Lightweight Hardtop Aerodynamic Optimal					
		Hardtop			
Lightweight Hardtop	1	0.33	1		
Aerodynamic	3	1	3		
Hardtop					
Optimal Hardtop	1	0.33	1		
Sum	5	1.66	5		

Normalized Load Bearing Capacity Comparison						
	Lightweight	Aerodynamic	Optimal Hardtop	Design		
	Hardtop	Hardtop		Alternative		
				Priorities {Pi}		
Lightweight	0.2000	0.1988	0.2000	0.1996		
Hardtop						

Aerodynamic	0.6000	0.6024	0.6000	0.6008
Hardtop				
Optimal Hardtop	0.2000	0.1988	0.2000	0.1996
Sum	1.000	1.000	1.000	1.000

Load Bearing Capacity Consistency Check					
Weighted Sum Vector Criteria Weights {W} Consistency Vector					
0.5975	0.1996	2.9933			
1.7984	0.6008	2.9933			
0.5975	0.1996	2.9933			

Table A-9: Consistency Check Representative for All High Fidelity Designs

Consistency Ratio	<0.10
1-LBC	0
2- Strain	0
3- Deflection	0
4- Hardtop Weight	0
5- L-D Ratio	0
6- Implementation Cost	0
7- Manufacturability	0

Table A-10: Consistency Ratios of All High Fidelity Designs

Hardtop Weight AHP

Hardtop Weight Comparison						
	Lightweight Hardtop Aerodynamic Optimal Hardtop					
		Hardtop				
Lightweight Hardtop	1	0.20	1			
Aerodynamic	5	1	5			
Hardtop						
Optimal Hardtop	1	0.20	1			
Sum	7	1.4	7			

Normalized Hardtop Weight Comparison						
	Lightweight	Aerodynamic	Optimal Hardtop	Design		
	Hardtop	Hardtop		Alternative		
				Priorities {Pi}		
Lightweight	0.1429	0.1429	0.1429	0.1429		
Hardtop						
Aerodynamic	0.7143	0.7143	0.7143	0.7143		
Hardtop						
Optimal Hardtop	0.1429	0.1429	0.7143	0.1429		
Sum	1.000	1.000	1.000	1.000		

H	ardtop Weight Consistency Cheo	ck			
Weighted Sum VectorCriteria Weights {W}Consistency Vector					
0.42857	0.1429	2,9991			
1.7984	0.7143	2.9991			
0.5975	0.1429	2.9991			

Table A-9: Consistency Check Representative for All High Fidelity Designs

L-D Ratio AHP

	L-D Ratio C	Comparison	
	Lightweight Hardtop	Aerodynamic	Optimal Hardtop
		Hardtop	
Lightweight Hardtop	1	5	5
Aerodynamic	0.20	1	1
Hardtop			
Optimal Hardtop	0.20	1	1
Sum	1.4	7	7

Normal	lized L-D Ratio Com	parison	
Lightweight	Aerodynamic	Optimal Hardtop	Design
Hardtop	Hardtop		Alternative
			Priorities {Pi}

Lightweight	0.7143	0.7143	0.7143	0.7143
Hardtop				
Aerodynamic	0.1429	0.1429	0.1429	0.1429
Hardtop				
Optimal Hardtop	0.1429	0.1429	0.1429	0.1429
Sum	1.000	1.000	1.000	1.000

	L-D Ratio Consistency Check	
Weighted Sum Vector	Criteria Weights {W}	Consistency Vector
2.14287	0.7143	2.99996
0.42857	0.1429	2.9991
0.42857	0.1429	2.9991

Table A-9: Consistency Check Representative for All High Fidelity Designs

Implementation Cost AHP

	Implementation	Cost Comparison	
	Lightweight Hardtop	Aerodynamic	Optimal Hardtop
		Hardtop	
Lightweight Hardtop	1	0.20	0.20
Aerodynamic	5	1	1
Hardtop			
Optimal Hardtop	5	1	1
Sum	11	2.4	2.4

	Normalized Implementation Cost Comparison						
	Lightweight	Aerodynamic	Optimal Hardtop	Design			
	Hardtop	Hardtop		Alternative			
				Priorities {Pi}			
Lightweight	0.0909	0.0833	0.0833	0.08585			
Hardtop							
Aerodynamic	0.4545	0.4167	0.4167	0.42929			
Hardtop							
Optimal Hardtop	0.4545	0.4167	0.4167	0.42929			

Sum	1.000	1.000	1.000	1.000

l Ir	nplementation Consistency Chee	ck
Weighted Sum Vector	Criteria Weights {W}	Consistency Vector
0.257575	0.08585	3.000
1.287878	0.42929	3.000
1.287878	0.42929	3.000

Table A-9: Consistency Check Representative for All High Fidelity Designs

			Criteria C	riteria Comparison Matrix [C]							
	Columiz	Columiz	Colum	- Colum	Colu		alumi z	Cal			
	Column	Column	Contenini	1 0 2222	222 0.22	2222	4	0.3	00000	-	
_				1 0.000.	1 0.00	0.2	0.2	0.0	1	-	
				-	-	0.2	0.2		<u></u>		
	1			1	1 0 00	1 0.		0.0	1	-	
	3		1	1	1 0.33	3333	3	0.3	33333		
	3	5	5	1	3	1	1	***	1	-	
	1	5	5	3	1	1	1		1	1	
	3		1	1	3	1	1		1		
Bum	13	15		9 10.3	33 4.8	667	5.5333	5.	6667		
				6.		-					
										1	6-10-1
		Co	onsitency l	Check				Con	sistenc	y Ca	alculation
		WSM	{W}	Cons V	ec			Col	umi	Co	lumi
		WSM -	{W}	- Cons	-			Avg	. Cons	7.7	782662
		0.656846	6 0.0	85 7.7276	625						
		0.665	0.0864	55 7.6918	354			Col	umi	Co	umi -
		0.866377	0 1133	81 7.641	302			Con	sindex	0	130444
		0.904309	0.1161	94 7 782	724				e nise n		
	-	1748209	0.1101	16 8 007	715			-			
		1 572502	0.2103	0 0.001	115			-			
		1.402388	0.2004	22 7.78	152						
				Normalized Com		n Matrix (N	rix [NormC]				
		Columi	Columiz	Columi	Columiz	Colum	- Colu		Colum	-	WI -
		0.076923	0.066667	0 111111	0.032258	0.0684	93 0 180	1723	0.0588	324	0.085
		0.076923	0.066667	0.111111	0.096774	0.0410	96 0.03	6145	0.1764	471	0.086455
		0.076923	0.066667	0.111111	0.096774	0.2054	79 0.06	0241	0.1764	471	0.11338
		0.230769	0.066667	0.111111	0.096774	0.0684	93 0,180	0723	0.0588	324	0.116194
		0.230769	0.333333	0,111111	0.290323	0.2054	79 0.180	0723	0.1764	471	0.218316
		0.076923	0.333333	0.333333	0.096774	0.2054	79 0.180	0723	0.1764	471	0.200434
		0.230769	0.066667	0.111111	0.290323	0.2054	79 0.180	0723	0.1764	471	0.18022
	1	1	1	1			1	1		1	1
								- 8			
Calculatio	ons										
the second s										_	
olumi -	w					Colum	- Colu				
olumi <mark>*</mark> 1.782662											
olumi * 7.782662 olumi *					1	# elemer	nts	7			
olum - 7.782662 olum - 0.130444						# elemer	nts	7			
olumi * 7.782662 olumi * 0.130444						# elemer	nts - Colui	7. ni -			
olumi * 7.782662 olumi * 0.130444						# elemen Columi AHP for 1	nts Colur # e	7 1.35			
olumi - 7.782662 olumi - 0.130444						# elemer	∼ Colu ≉e	7, n. - 1.35,			
olumi * 7.782662 olumi * 0.130444	Column -	Colum: ~				# elemen Columi AHP for ^s	∼ Colu #e	7 1.35			
olumi - 7.782662 olumi - 0.130444	Column ~ Cons Ratio	Colum ~ 0.096625				# elemen Columi AHP for t	∼ Colu #e	7 nu - 1.35			

				7 11 1 1					
	Final Rating	g Matrix				2			
					Transpose F	inal Rating M	latrix		
Columi -	Columi -	Columi							
0.1996	0.6008	0.1996	0.1996	0.1996	0.1996	0.1429	0.7143	0.0858	0.1423
0.1996	0.6008	0.1996	0.6008	0.6008	0.6008	0.7143	0.1429	0.42929	0.1423
0.1996	0.6008	0.1996	0.1996	0.1996	0.1996	0.1429	0.1429	0.42929	0.714
0.1429	0.7143	0.1429							
0.7143	0.1429	0.1429							
0.0858	0.42929	0.42929						12	
0.1429	0.1429	0.7143							
	stoc to hore			Alternative	Value				
				Columi	Columi				
				Lightweigh	0.272351				
				Aero	0.397122				
				Optimal	0.31943				

Table A-10: Excel Sheet Used for AHP Calculations of Engineering Requirements Against Designs